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A numerical simulation of convective swirling jets arising as a result of the rotation of a heated disk in an
initially immovable medium has been carried out. It is shown that in the case where a jet is swirled moder-
ately, the flow is relaminarized and the intensity of the heat and mass transfer in the convective jet decreases,
which leads to an increase in the buoyancy force and, consequently, an increase in the velocity of the flow.
The air mass in the form of a cylindrical column-shaped vortex rises above the disk to a large height and, in
doing so, retains its individuality.

In [1], a complex investigation of free convective flows has been carried out. In [2], a review and a classifi-
cation of different-type vortices and the theory of concentrated single vorticities, including tornadoes, are given. In [3],
results of experimental investigations of tornado-like flows above a heated rotating disk in the atmosphere of an im-
movable air and a classification of the types of these flows are presented. One such flow is a tornado — a concen-
trated column-shaped vortex. In [4, 5], a theoretical model of formation of tornado-like vortices of an incompressible
perfect liquid is proposed.

The heat transfer from the surface of a rotating disk has been investigated in [6]. In [7], some mechanisms of
formation of heat and flame tornadoes have been determined experimentally. In [8, 9], a mathematical model of for-
mation of a convective column and a flame tornado has been formulated for the case of forest fires and a mathemati-
cal simulation with this model has been performed.

The aim of the present work is to improve the mathematical model proposed in [3], to perform a numerical
simulation of heat tornadoes arising as a result of the rotation of a heated disk in an initially immovable medium, and
to substantiate this model by comparison of the numerical-simulation results with the experimental data of [3, 6, 7].

A scheme of physical simulation of the indicated vortices is given in [3, 7]. Disks of diameter D = 0.1–0.4 m
were used in the investigations. The temperatures of the disks and the environment were assumed to be equal to T∗ =
400–1000 K and Te = 300 K, respectively.

Mathematical Model of a Heat Tornado. The problem is mathematically formulated with the following as-
sumptions:

1) the flow in the region being considered is axisymmetrical;
2) the disk rotates with a constant angular velocity;
3) the power of the heat-release source does not change with time;
4) in the moving air there are regions of laminar, transient, and completely turbulent flows.
The characteristics of the flow and the heat transfer were calculated using the Reynolds equations of [10]. The

characteristics of the turbulence were calculated with the use of the balance equations for the kinetic turbulent energy
K and the rate of its dissipation ε with account for the action of the buoyancy forces, the smallness of the Reynolds
numbers [11], the anisotropy of the turbulent pulsations [12], and the influence of the swirling on the stability of the
turbulent flow [13]. The convection and the heat-transfer processes were defined with the heat-conduction equation.
The density of the medium was determined by the equation of ideal-gas state. With allowance for the aforesaid we
obtain the following system of equations:
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To the constants involved in the equations we were given the values recommended in [13]: C1ε = 1.44, C2ε
= 1.92, C1

′ = 0.9, C2
′ = 0.2, C3ε = 0.8, σε = 1.3, σk = 1, Cµ = 0.09, Prt = 0.7. The values of the physical parameters

— the viscosity, heat conduction, and heat capacity of the flow — were determined for different temperatures in ac-
cordance with the data presented in [14].

The system of equations (1)–(8) was solved for the following initial and boundary conditions:

t = 0 :   vz = 0 ,   vr = 0 ,   vϕ = 0 ,   k = 0 ,   ε = 0 ,   T = Tin ; (9)

at t > 0, at the boundaries of the computational region the following conditions were fulfilled:

z = 0 ,   r ≤ D ⁄ 2 :   vz = 0 ,   vr = 0 ,   vϕ = ωr ,   k = Tu vϕ
2
 ,   T = T∗ ;

(10)

z = 0 ,   r > D ⁄ 2 :   vz = 0 ,   vr = 0 ,   vϕ = 0 ,   T = Te ; (11)
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In Eqs. (13) and (14), R∞ and H∞ are computational parameters assumed to be equal to 2 and 10 m, respectively, and
Tu is a parameter characterizing the initial turbulence of the flow. In the main calculations, Tu = 0.03.

Methods of Solution. The above-considered equations were solved numerically with the use of the finite-vol-
ume method. In accordance with this method, the finite-difference equations are obtained by integration of differential
equations with respect to control volumes containing nodes of a finite-difference grid. The numerical solution was car-
ried out on a staggered grid, and the nodes for the axial and radial velocity components were located at the center of
the faces of the control volumes for scalar quantities. The calculations were carried out on a grid with 210 nodes in
the axial direction and 176 nodes in the radial one.

For estimation of the accuracy of calculations, we carried out a series of calculations with the use of se-
quences of bunching grids. The results of the testing show that a decrease in the pitch of the base grid, on which the
main calculations were performed, along the axial and radial coordinates by two times changes the values of the main
variables by no more than 3%. The convective terms were approximated using the upwind QUICK scheme of the third
order of accuracy, proposed by Leonard [15], and the diffusion terms were approximated using the central-difference
scheme. The continuity equation was satisfied indirectly with the use of the SIMPLEC algorithm [16]. The system of
nonlinear algebraic equations was solved numerically with the use of iterations. It was assumed that the iterative con-
vergence is attained if the mean-square discrepancy for all the variables does not exceed 1%.

Analysis of Results. The main characteristic movement of a nonrotating disk in the convection regime causes
a rise of the heated air above the disk and, as a result, a sideward motion of the air at the disk edges. At the initial
stage of this motion, the air flows from the peripheral region of the disk to its heated horizontal region. In this case,
the intensity of the radial flow is determined by the power of the heat source. An upward flow in the form of a sta-
tionary torch is formed above the surface of the disk.
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In the main region of the jet, the buoyancy force dominates, with the result that the velocity of the flow in-
creases. As the flow cools down, the role of the buoyancy force decreases and becomes negligibly small; in this case,
the air flows by inertia and, in doing so, decelerates gradually as a result of the action of the viscous forces. There-
fore, this region of the jet can be considered as inertial. The air mass forming the torch is mixed with the environ-
mental air. The stationary torch is scattered gradually and disappears.

The swirling of the gas flow leads to the appearance of the tangential component of the velocity w and the
formation of the field of centrifugal forces; these forces are proportional to ρw2 ⁄ r and intensify the gas motion in the
radial direction. The influence of the swirling of the jet on the structure of the flow and the heat transfer in it is con-
veniently characterized by the integral Heeger–Beer parameter of swirling [10], representing the ratio between the axial
component of the angular moment of the flow and the product of the radius of the channel by the axial component of
this moment:

Φ∗ = 

2 ∫ 
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R

ρvzvϕr
2
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D ∫ 
0

R

ρ vz
2
 + (p + ρgz) rdr

 . (15)

The change in the parameter Φ∗ with height is shown in Fig. 1. As is seen from this figure, the Heeger–Beer
parameter increases in the initial region of the jet, which is explained by the entrainment of the air mass sucked from
the peripheral region into the rotation. Then, downstream, as the swirling of the jet degenerates, Φ∗ decreases. An in-
crease in the rotational velocity of the disk leads to an increase in the swirling of the jet; in this case, a maximum of
Φ∗ is attained at a smaller distance from the disk. A weak swirling (Φ∗ < 0.3) practically has no influence on the pat-
tern of the flow. However, when the swirling of the jet increases, in its central near-axis region there appear zones
with a rarefaction or a smaller static pressure due to the centrifugal effect. Because of this, dips arise in the profile of
the transverse axial velocity of the flow in the near-axis zone of the jet when its swirling is moderate (0.3 < Φ∗ < 0.6)
and back currents arise in the case of strong swirling of the jet (Φ∗ > 0.6).

Figure 2 shows radial distributions of the axial velocity of the flow at different heights of a jet with moderate
swirling. Near the surface of the disk, in the region where the swirling of the jet is fairly small, the distribution of the
axial velocity of the flow is monotonic. Then, as the swirling of the jet increases, the curve vz(r) takes a characteristic
form with a displacement of the maximum relative to the center and a dip at the center. When the distance between
the flow and the disk increases further, the width of the jet increases, the inner zone with a velocity dip disappears,
and the velocity profile deforms and becomes monotonic.

Fig. 1. Change in the Heeger–Beer parameter with height: ω = 0.5 (1), 1.5 (2),
and 2 sec−1 (3). z, m.

Fig. 2. Radial distribution of the axial velocity: x = 0 (1), 5 (2), 15 (3), 25
(4), 30 (5), 35 (6), and 40 cm (7). ω = 1.5 sec−1, Tin = 300 K, T∗ = 450 K.
vz, m ⁄ sec; r, m.
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The radial distribution of the tangential velocity of the flow in a jet formed above a heated disk is shown in
Fig. 3. This jet contains a central core rotating quasi-rigidly and an outer region rotating quasi-potentially. Outside the
central region, the conditions for a free vortex are prevailing. Thus, the rotation of the flow being considered can be
described with the use of a free forced vortex, which, as applied to the atmospheric phenomena, corresponds to the
formation of tornadoes, dust storms, and other tornado-like vortices.

In the above-described jet there are three regions, in which the change from the laminar to the turbulent re-
gime of flow is realized, and regions where the flow is laminarized. Near the surface of the disk, in the heated bound-
ary layer, there arises a laminar flow that is transformed into the turbulent one in the main region of the jet. It should
be noted that, in this case, a laminar flow can be formed at the periphery of the jet stream. In the inertial region of
the jet, where the velocity of the rising air flow increases, the intensity of the turbulent pulsations decreases and the
flow relaminarizes.

The swirling of the jet influences not only the structure of the flow, but also the characteristics of its turbu-
lence. One mechanism of this influence is fairly evident. A swirling of the flow gives rise to large gradients of the
velocity of the flow and, in doing so, generates turbulent stresses. In a swirling jet, the influence of the centrifugal
force on the structure of the flow is similar in character to the action of the temperature stratification in the field of
a gravity force [17]. In this case, depending on the character of the radial distribution of the velocity components, the
kinetic energy can be transformed into the potential one — a conservative action or, conversely, an active action. The
centrifugal force aids in increasing turbulent pulsations in the case of an active action and suppresses these pulsations
in the case of a conservative action.

The action of the swirling of a jet on the turbulence of the flow is defined by the terms accounting for the
influence of the swirling on the dissipation of the turbulent energy, added into the equation for the rate of dissipation
of the turbulent energy ε (6):
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Analysis of these terms with consideration for the radial distribution of the tangential velocity of the flow (see
Fig. 3) allows the conclusion that the swirling of a jet exerts a conservative or, at least, a neutral action on its turbu-
lent pulsations, which is most marked in jets with a moderate swirling. This effect does not arise in jets with a weak
swirling because of the smallness of the indicated action in them. In jets with a strong swirling, the influence of the
swirling on the turbulence plays a dominant role, which is explained by the appearance of large gradients of the ve-
locity of the average flow and, as a consequence, the increase in the turbulent stresses.

Thus, the structure of the turbulence in a jet with a moderate swirling is characterized by an intensive turbuli-
zation in the vicinity of the surface of the disk and a not less intensive relaminarization in the main region of the flow.

Fig. 3. Radial distribution of the tangential velocity: x = 5 (1), 10 (2), 15 (3),
20 (4), and 25 cm (5). Tin = 300 K, T∗ = 450 K. vϕ, m ⁄ sec; r, m.

Fig. 4. Change in the intensity of the heat transfer from a rotating disk: 1) ex-
periment [3]; calculation (2). ω, sec−1.
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Figure 4 shows a comparison of the Nusselt numbers Nu = αD ⁄ λ0, calculated on the basis of the turbulence
model adopted here, with the experimental data of [6], characterizing the heat transfer from a rotating disk. As is seen
from this figure, the heat-transfer coefficient characterized by the parameter Nu increases with increase in the angular
rotational velocity of the disk. In this case, the change to the turbulent regime of heat transfer is accompanied by a
sharp increase in the heat transfer from the surface of the disk. The results of the calculations are in satisfactory agree-
ment with the experimental data throughout the range of swirlings being investigated. A small deviation of the calcu-
lation data from the experimental ones is probably due to the more complex mechanism of decreasing the stability of
the jet and the appearance of a turbulence.

The change in the excess temperature ∆T = T − Te at the axis of a jet is shown in Fig. 5. The results obtained
are in satisfactory qualitative agreement with the experimental data [3] (the comparison is given for the maximum tem-
perature difference). The small difference between the calculation and experimental data near the surface of the disk
can be explained by the features of the installation of the disk on the test bed that were not taken into account in the
theoretical investigation.

It is seen from Fig. 5 that the temperature distribution along the axis of the flow has two regions. In the first,
initial region, the temperature remains practically unchanged, and, in the second region, the temperature decreases ex-

Fig. 5. Change in the temperature at the axis of the flow: ω = 0 (1), 0.15 (2),
0.33 (3), 0.75 (4), 1 (5), 1.25 (6), 1.5 (7), 2 (8), and 0.33 sec−1 (9) (experi-
ment). ∆T, K; z, m.

Fig. 6. Distribution of isotherms in the flow (the minimal isotherm corresponds
to the temperature 50oC, the spacing between the isolines is equal to 20oC):
ω = 0 (a), 0.15 (b), 0.5 (c), 1 (d), 1.5 (e), and 2 sec−1 (f). z, r, m.
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ponentially. An increase in the angular rotational velocity of the disk to ω < 1.5 sec−1 leads to an increase in the tem-
perature of the flow and to an elongation of the region with a nearly constant temperature distribution. The tempera-
ture of the flow decreases fairly abruptly when its swirling increases.

The reasons for such behavior of the temperature of the flow being considered are the features of its turbu-
lent structure. An increase in the rotational velocity of the disk to ω < 1.5 sec−1 leads to an intensification of the
heat exchange between the air and the heater (because of the turbulization of the flow in the main region of the
jet). A decrease in the heat exchange with the environmental air leads to an increase in the buoyancy force and,
consequently, an increase in the velocity of the flow. When the angular rotational velocity of the disk falls within
the range 1 sec−1 < ω < 1.5 sec−1, the air mass shaped as a laminarized cylinder rises to a large height and, in doing
so, retains its individuality (Fig. 6a–e). A flow of this type can be considered as the initial stage of formation of a
heat tornado (Fig. 6e).

Our calculations have shown that a heat tornado can exist in the narrow range of angular rotational velocities
of a disk 1 sec−1 < ω < 1.5 sec−1. At ω > 1.5 sec−1 the jet breaks down and the height of the swirling convective col-
umn decreases markedly (Fig. 6f).

Analytical Formula for the Height of a Heat Tornado. An analysis of the experimental and theoretical inves-
tigations [3–6] allows the conclusion that the determining condition for the formation of a heat tornado is the existence
of a local equilibrium between the acting forces. If the assumption is made that the heat energy supplied to the tornado
is completely transformed into the potential one, the height of the heat tornado can be determined by the formula

h = 
1

2g
 




Q

ρT∗D
2





2 ⁄ 3

 
Te

T∗ − Te

 . (16)

Here Q is the intensity of heating of the air mass by a rotating disk. In accordance with [4], this energy can be de-
termined as

Q = 3.6 + 0.1Reω
0.6
 λD (T∗ − Te) , (17)

where Reω = ρωπD2 ⁄ 2µ is the Reynolds number of the rotational motion.
The results of calculations by formula (16) with the use of (17) give the overstated value of the height of a

heat tornado because these formulas take no account for the heat losses caused by the heating of the environmental
air. Therefore, formula (16) should be corrected with allowance for the heat exchange. The heat energy expended for
the rise of the air mass can be determined from the formula

Q∗ = f (Reω) Q ,

where f(Reω) is the function of the Reynolds number of the rotational motion, characterizing the heat losses. The proc-
essing of the calculation data has shown that the following dependence can be used:

f (Reω) = 0.6⋅exp − 0.002 Reω
0.6
 .

The finite formula for determining the height of a heat tornado has the form
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 .

Thus, in the case of a moderate swirling of a jet a heat tornado arises as a result of the formation of a local
equilibrium in a free forced vortex due to the anisotropy of the turbulence of the flow and its laminarization leading
to a decrease in the heat exchange with the ambient air and, consequently, to an increase in the buoyancy force and
an increase in the velocity of the flow.
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NOTATION

cp, specific heat capacity at a constant pressure, J ⁄ (kg⋅K); D, diameter of a disk, m; g, free fall acceleration,
m ⁄ sec2; h, height of a heat tornado, m; k, kinetic turbulent energy, J ⁄ kg; M, molecular mass of a gas, kg ⁄ mole; Nu,
Nusselt number; p, dynamic pressure, Pa; Pr, Prandtl number; Q, intensity of heating of air masses by the rotating
disk, W; R∗, universal gas constant, J ⁄ (mole⋅K); r, radial coordinate, m; Reω, Reynolds number of the rotational mo-
tion; Tu, intensity of the turbulence of a flow; T, temperature, K; v, velocity vector; vz, vr, and vϕ, axial, radial, and
tangential velocity components, m ⁄ sec; z, axial coordinate, m; α, heat-transfer coefficient, W ⁄ (m2⋅K); ε, rate of dissi-
pation of the turbulent energy, W ⁄ kg; λ, heat-conductivity coefficient, W ⁄ (m⋅K); µ, dynamic viscosity, Pa⋅sec; ρ, den-
sity, kg ⁄ m3; ω, angular rotational velocity of the disk, 1 ⁄ sec; Φ∗, Heeger–Beer parameter of swirling. Subscripts: e,
environment; in, input parameters; t, turbulent; 0, molecular; ∞, parameters at infinity.
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